2. Sets and Set Operations

Section 2.1: Sets

- Set is a collection of distinct unordered objects.
- Members of a set are called elements.
- For example:
- $A=\{1,3,5,7\} ; 3 \in A, 2 \notin A$
- $B=\{$ Cat, Dog, Fox $\}$
- $C=\left\{x \mid x=n^{2}+1, n\right.$ is an integer, $\left.0 \leq n \leq 10\right\}$
- $D=\{x \mid 1 \leq x \leq 4\}=[1,4]$

Basic Notations for Sets

(1) listing all of its elements in curly braces:

- Finite sets:

$$
\begin{gathered}
V=\{a, e, i, o, u\} \\
S=\{1,2,3, \ldots, 99\}
\end{gathered}
$$

- Infinite sets:
$\mathbf{N}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots\}, \quad$ The set of natural numbers
$Z=\{\ldots,-2,-1,0,1,2, \ldots\}$, The set of integers $\mathbf{Z}^{+}=\{1,2,3, \ldots\}, \quad$ The set of positive integers $R=$ The set of real numbers

Basic Notations for Sets

(2) Set builder notation: For any proposition $P(x)$ over any universe of discourse, $\{x \mid P(x)\}$ is the set of all x such that $P(x)$.

Example
"The set of all odd positive integers less than 10 " $O=\{x \mid x$ is an odd positive integer and $x<10\}$

Examples

Use the set builder notation to describe the sets

$$
\begin{gathered}
A=\{1,4,9,16,25, \ldots\} \\
B=\{\mathrm{a}, \mathrm{~d}, \mathrm{e}, \mathrm{~h}, \mathrm{~m}, \mathrm{o}\} \\
A=\left\{x \mid x=n^{2}, n \text { is positive integer }\right\} \\
B=\{x \mid x \text { is a letter of the word mohamed }\}
\end{gathered}
$$

Basic Notations for Sets

(3) Venn Diagrams

Primes \& 10

Membership in Sets

- $x \in S: x$ is an element or member of the set S. e.g. $3 \in \mathrm{~N}$
"a" $\in\{x \mid x$ is a letter of the alphabet $\}$
- $x \notin S: \equiv \neg(x \in S) \quad$ " x is not in S "

The Empty Set

- \varnothing (null or the empty set) is the unique set that contains no elements.
- $\varnothing=\{ \}$
- Empty set \varnothing does not equal the singleton set $\{\varnothing\}$

$$
\varnothing \neq\{\varnothing\}
$$

Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.
i.e. A and B are equal if and only if

$$
\forall x(x \in A \leftrightarrow x \in B)
$$

Example: (Order and repetition do not matter)

$$
\{1,3,5\}=\{3,5,1\}=\{1,3,3,3,5,5,5\}
$$

Subset Relation

- $S \subseteq T$ (" S is a subset of T ") means that every element of S is also an element of T.
- $S \subseteq T \Leftrightarrow \forall x(x \in S \rightarrow x \in T)$
$\varnothing \subseteq S$
- $S \subseteq S$
- If $S \subseteq T$ is true and $T \subseteq S$ is true then $S=T$,

$$
\forall x \quad(x \in S \leftrightarrow x \in T)
$$

- $S \nsubseteq T$ means $\neg(S \subseteq T)$,

$$
\text { i.e. } \exists x(x \in S \wedge x \notin T)
$$

Proper Subset

- $S \subset T$ (S is a proper subset of T) means every element of S is also an element of T, but $S \neq T$.
e.g.
$\{1,2\} \subset\{1,2,3\}$

Venn Diagram equivalent of $S \subset T$

Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
e.g. let $S=\{x \mid x \subseteq\{1,2,3\}\}$ then $S=\{\varnothing$,

$$
\begin{aligned}
& \{1\},\{2\},\{3\}, \\
& \{1,2\},\{1,3\},\{2,3\}, \\
& \{1,2,3\}\}
\end{aligned}
$$

- Note that $1 \neq\{1\} \neq\{\{1\}\}$!!!!

Cardinality and Finiteness

- $|S|$ or $\operatorname{card}(S)$ (read the cardinality of S) is a measure of how many different elements S has.

$$
\text { e.g. } \begin{aligned}
& |\varnothing|=|\{ \}|=0 \\
& |\{1,2,3,5\}|=4 \\
& |\{a, b, c\}|=3 \\
& |\{\{1,2,3\},\{4,5\}\}|=2
\end{aligned}
$$

The Power Set Operation

- The power set $P(S)$ of a set S is the set of all subsets of S.
e.g.
- $P(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\}$
- $P(\{1,2,3\})=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\}$, $\{1,3\},\{2,3\},\{1,2,3\}\}$
- $P(\{a\})=\{\varnothing,\{a\}\}$
- $P(\{\varnothing\})=\{\varnothing,\{\varnothing\}\}$
- $P(\varnothing)=\{\varnothing\}$

Note:

If a set has n elements then $P(S)$ has 2^{n} elements.

Ordered n-tuples

- The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{\mathrm{n}}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element and so on.
- These are like sets, except that duplicates matter, and the order makes a difference.
e.g. $(2,5,6,7)$ is a 4-tuple.
- Note that $(1,2) \neq(2,1) \neq(2,1,1)$.
- Note: 2-tuples are called ordered pairs.

Cartesian Products of Sets

- The Cartesian product of any two sets A and B is defined by

$$
\begin{gathered}
A \times B: \equiv\{(a, b) \mid a \in A \wedge b \in B\} \\
\text { e.g. }\{a, b\} \times\{1,2\}=\{(a, 1),(a, 2),(b, 1),(b, 2)\}
\end{gathered}
$$

- Note that for finite A and $B,|A \times B|=|A||B|$.
- Note that the Cartesian product is not commutative: $A \times B \neq B \times A$.
e.g. $\{1,2\} \times\{a, b\}=\{(1, a),(1, b),(2, a),(2, b)\}$

Section 2.2: Set Operations The Union Operator

- For any two sets A and $B, A \cup B$ is the set containing all elements that are either in A, or in B or in both.
- Formally:

$$
A \cup B=\{x \mid x \in A \vee x \in B\} .
$$

Union Example

$$
\{2,3,5\} \cup\{3,5,7\}=\{2,3,5,3,5,7\}=\{2,3,5,7\}
$$

The Intersection Operator

- For any two sets A and B, their intersection $A \cap B$ is the set containing all elements that are in both A and in B.
- Formally:

$$
A \cap B=\{x \mid x \in A \wedge x \in B\} .
$$

Intersection Examples

- $\{a, b, c\} \cap\{2,3\}=\varnothing \quad$ disjoint
- $\{2,4,6\} \cap\{3,4,5\}=\{4\}$

Inclusion-Exclusion Principle

- How many elements are in $A \cup B$?

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Example:

$$
\begin{aligned}
& \{1,2,3\} \cup\{2,3,4,5\}=\{1,2,3,4,5\} \\
& \{1,2,3\} \cap\{2,3,4,5\}=\{2,3\} \\
& |\{1,2,3,4,5\}|=3+4-2=5
\end{aligned}
$$

Set Difference

- For any two sets A and B, the difference of A and B, written $A-B$, is the set of all elements that are in A but not in B.

$$
\begin{aligned}
A-B & : \equiv\{x \mid x \in A \wedge x \notin B\} \\
& =\{x \mid \neg(x \in A \rightarrow x \in B)\}
\end{aligned}
$$

$A-B=A \cap \bar{B}$ is called the complement of B with respect to A.

$$
\text { e.g. }\{1,2,3,4,5,6\}-\{2,3,5,7,9,11\}=\{1,4,6\}
$$

Set Difference - Venn Diagram

Symmetric Difference

- For any two sets A and B, the symmetric difference of A and B, written $A \oplus B$, is the set of all elements that are in A but not in B or in B but not in A.

$$
\begin{aligned}
& A \oplus B: \equiv\{x \mid(x \in A \wedge x \notin B) \vee(x \in B \wedge x \notin A)\} \\
& =(A-B) \cup(B-A) \\
& =(A \cup B)-(A \cap B)
\end{aligned}
$$

e.g. $\{1,2,3,4,5,6\} \oplus\{2,3,5,7,9,11\}=\{1,4,6$, 9,11\}

Symmetric Difference - Venn Diagram

Set Complements

- U : Universe of Discourse
$\bar{A}:$ For any set $A \subseteq U$, the complement of A, i.e. it is $U-A$.

$$
\bar{A}=\{x \mid x \notin A\}
$$

$$
\begin{aligned}
\text { e.g. If } U & =\mathbf{N}, \\
\{3,5\} & =\{0,1,2,4,6,7, \ldots\}
\end{aligned}
$$

Example

Let A and B are two subsets of a set E such that $A \cap B$ $=\{1,2\},|A|=3,|B|=4, \bar{A}=\{3,4,5,9\}$ and $\bar{B}=$ $\{5,7,9\}$. Find the sets A, B and E.

Example

Let A and B are two subsets of a set E such that $A \cap B$ $=\{1,2\},|A|=3,|B|=4, \bar{A}=\{3,4,5,9\}$ and $\bar{B}=$ $\{5,7,9\}$. Find the sets A, B and E.

$$
\begin{gathered}
A=\{1,2,7\}, B=\{1,2,3,4\}, \\
E=\{1,2,3,4,5,7,9\}
\end{gathered}
$$

Set Identities

- Identity: $A \cup \varnothing=A=A \cap U$
- Domination: $A \cup U=U, A \cap \varnothing=\varnothing$
- Idempotent: $A \cup A=A=A \cap A$
- Double complement: $(\bar{A})=A$
- Commutative: $A \cup B=B \cup A, A \cap B=B \cap A$
- Associative: $A \cup(B \cup C)=(A \cup B) \cup C$

$$
A \cap(B \cap C)=(A \cap B) \cap C
$$

- Distribution: $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

- DeMorgan's Law: $\overline{A \cup B}=\bar{A} \cap \bar{B}$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

Proving Set Identities

- To prove statements about sets of the form $E_{1}=E_{2}$, where the E s are set expressions, there are three useful techniques:

1. Proving $E_{1} \subseteq E_{2}$ and $E_{2} \subseteq E_{1}$ separately.
2. Using set builder notation and logical equivalences.
3. Using set identities.

Example: Show $\overline{A \cap B}=\overline{\mathrm{A}} \cup \bar{B}$ Method 1: Prove $E_{1} \subseteq E_{2}$ and $E_{2} \subseteq E_{1}$

Assume $x \in \overline{A \cap B}$
$\Leftrightarrow x \notin A \cap B \quad$ by the definition of the complement $\Leftrightarrow \neg((x \in A) \wedge(x \in B))$ by the definition of intersection $\Leftrightarrow \neg(x \in A) \vee \neg(x \in B) \quad$ by De Morgan's law
$\Leftrightarrow x \notin A \vee x \notin B$ by the definition of negation
$\Leftrightarrow x \in \bar{A} \vee x \in \bar{B}$ by the definition of the complement
$\Leftrightarrow x \in \bar{A} \cup B \quad$ by the definition of union

Method 2: Set Builder Notation

Show $\overline{A \cap B}=\overline{\mathrm{A}} \cup \bar{B}$

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg(x \in(A \cap B))\} \\
& =\{x \mid \neg(x \in A \wedge x \in B)\} \\
& =\{x \mid \neg x \in A \vee \neg x \in B)\} \\
& =\{x \mid x \notin A \vee x \notin B\} \\
& =\{x \mid x \in \bar{A} \vee x \in \bar{B})\} \\
& =\{x \mid x \in \bar{A} \cup \bar{B}\}=\bar{A} \cup \bar{B}
\end{aligned}
$$

Method 3 : Using Set Identities

Show that $\overline{A \cup(B \cap C)}=(\bar{C} \cup \bar{B}) \cap \bar{A}$
$\overline{A \cup(B \cap C)}=\bar{A} \cap(\overline{B \cap C})$ De Morgan's law $=\bar{A} \cap(\bar{B} \cup \bar{C})$ De Morgan's law
$=(\bar{B} \cup \bar{C}) \cap \bar{A}$ Commutative law
$=(\bar{C} \cup \bar{B}) \cap \bar{A}$ Commutative law

Method 3 : Using Set Identities

Show that $(B \cup C)-A=(B-A) \cup(C-A)$.

$$
\begin{aligned}
(B \cup C)-A & =(B \cup C) \cap \bar{A} \\
& =(B \cap \bar{A}) \cup(C \cap \bar{A}) \\
& =(B-A) \cup(C-A) .
\end{aligned}
$$

Computer Representation of Sets

- Let $U=\{1,2,3,4,5,6,7,8,9,10\}$. The bit string (of length $|U|=10$) that represents the set $A=\{1,3,5,6,9\}$ has a one in the first, third, fifth, sixth, and ninth position, and zero elsewhere. It is 1010110010.

